WE ENGINEER EXCELLENCE
Tank Connection is the leading international bolted tank manufacturer for factory coated bolted storage tanks and aluminum geodesic dome covers for liquid and dry bulk storage applications.

WE EXCEED EXPECTATIONS
Tank Connection is committed to helping clients find success with their projects. Utmost devotion to the customer drives an unyielding pursuit of excellence that is the embodiment of Tank Connection.

WE OWN A REPUTATION OF SUCCESS
Tank Connection is an employee owned company, manufacturing American made products in ISO 9001 Certified facilities in the U.S. Tank Connection has built a reputation of success with a passion for safety, innovation and continuous improvement.

WE FACILITATE COMPREHENSIVE SOLUTIONS
Tank Connection focuses on listening to clients and providing them with factual information on different types of storage containment options. This approach to service clients is based on the development of a broad product line of superior storage tank products, designs and field services.

ADVANCED DESIGN
INDUSTRY EXPERTS
SUPERIOR QUALITY
UNMATCHED COATINGS
EMPLOYEE OWNED AMERICAN MADE
GAME CHANGING INNOVATION
PREMIER ALUMINUM DOME COVERS
GOLDEN RULE CUSTOMER SERVICE
BOLTED RTP DESIGN
PRECISION ENGINEERING PERFECTED.
Tank Connection's bolted RTP (Rolled, Tapered Panel) tank design is a culmination of experience, innovation, and vision to create the highest quality tank in the storage industry. Distinguished for outstanding quality, longevity and reliability, Tank Connection's bolted RTP tanks feature advanced engineering, precision fabrication and premier coating technology.

THE BOLTED RTP ADVANTAGE

- **#1 BOLTED TANK DESIGN WORLDWIDE**
- **LIQ FUSION 8000 FBE™**
- **LIQ FUSION 8000 FBE™ + EXT FUSION SDP™**
- **MODULAR CONSTRUCTION**
- **GRADE LEVEL, SYNCHRONIZED JACKING PROCESS**
- **#1 BOLTED TANK DESIGN WORLDWIDE**
- **LIQ FUSION 8000 FBE™**
- **LIQ FUSION 8000 FBE™ + EXT FUSION SDP™**
- **MODULAR CONSTRUCTION**
- **GRADE LEVEL, SYNCHRONIZED JACKING PROCESS**

THE BOLTED RTP ADVANTAGE

- **UNMATCHED IN ALL CATEGORY RANKINGS**
- **PRECISION ENGINEERING**
- **NO LEAK DESIGN**
- **SAFE FIELD INSTALLATION**
- **ROBUST DESIGN**
- **UNMATCHED IN ALL CATEGORY RANKINGS**
- **PRECISION ENGINEERING**
- **NO LEAK DESIGN**
- **SAFE FIELD INSTALLATION**
- **LONG LIFE + LOW MAINTENANCE**
- **DIVERSE + VERSATILE DESIGN**
- **ECONOMICS OF VALUE**
- **HEAVY TANK DESIGN**
- **EXACT MANUFACTURING TOLERANCES**
- **CAPACITIES UP TO 8 MILLION GALLONS**
- **SMOOTH WALL CONSTRUCTION**
- **QUICK INSTALLATION**
- **FACTORY DIRECT INSTALLATION CREWS AVAILABLE**
THE COATING PROCESS

Tank Connection’s fusion powder coating systems are formulated from thermosetting resins, binder, pigments and additives. The fusion powder coating formulations are created by blending the various components and processing them through an extruder into a continuous mass with a completely uniform composition. This homogeneous mass is then cooled and broken down into small chips, which are then ground into a fine powder. Each particle of powder contains within it the necessary components for reforming into the finished coating after fusion application and oven baking. LIQ Fusion 8000 FBE™ and EXT Fusion SDP™ powder coating systems are electrostatically applied from an automated fusion powder coating line.

The pre-stages of the LIQ Fusion 8000 FBE™ application are critical to provide the best substrate surface and anchor profile. All bolted steel panels are chemically washed and blasted to an SSPC-SP-10 near white finish. LIQ Fusion powder is fed pneumatically from a reservoir into automated spray guns where a low amperage, high voltage charge is imparted to the particles. The bolted panels to be coated are grounded, so that the charged particles will seek the opposite charged metal surfaces. This coating process produces a uniform, monolithic, fusion-bonded surface with complete edge and bolt hole coverage.

UNBREAKABLE BOND

The thermoset powders, utilized by Tank Connection, incorporate low molecular weight solids that go through a fusion and chemical reaction to form higher molecular weight polymers. Once the powder is applied, the bolted steel panels enter an oven where the resins, pigments and other reactive agents crosslink to produce a high molecular weight binder system. Tank Connection’s thermoset processes are irreversible. Once the curing and crosslink takes place, the powder coating can not be returned to its original form by any means.
Tank Connection's powder on powder coating process creates a top coat layer that can not be removed independently from the base coat. This top coat, fused to the primer substrate, offers superior protection and unparalleled longevity and performance. The electrostatically applied fusion bond process provides 100% coating coverage on all edges and bolt holes.

Fusion Bond Process

- **SPPC-SP-10 near white metal blast surface preparation**
- **LIQ FUSION 8000 FBE™** Powder base coat
- **EXT FUSION SDP™** Powder top coat

Fusion Powder Coating Detail

- **Front View**
- **Side View**

100% Coverage on Edges and Bolt Holes

- Steel panel
- Powder base coat
- Powder top coat

Fusion Powder Coating Line

1. Component staging
2. Manifest operator
3. Coating line oven temp. setting changes
4. Coating line color requirements
5. Hanging tank components
6. Component wash
7. Component drying
8. Shot blast metal surface preparation
9. Blast profile inspection
10. E-room
11. Gel oven
12. 1st cool down tunnel
13. Topcoat powder booth
14. 2nd powder process booth
15. Final cure oven
16. Final cool down tunnel
17. Holiday/pin hole testing
18. Cross hatch testing
19. DFT coating test
20. Visual inspection & unloading
21. Skid crating & shipping
CERTIFICATIONS
- NSF/ANSI Standard 61: Drinking Water Systems
- FDA - 21 CFR 175.300: Resinous and Polymeric Coatings

CHARACTERISTICS
- Fusion bonded to substrate surface
- Abrasion, chip and scrape resistant
- Can be repaired in the field if damaged
- Superior test performance compared to all other coatings
- Does not crack or spall
- Excellent chemical and corrosion resistance

PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>TEST METHOD</th>
<th>PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesion</td>
<td>ASTM D3359</td>
<td>100%</td>
</tr>
<tr>
<td>Abrasion Resistance</td>
<td>ASTM D4060-07</td>
<td>< 70mg Loss</td>
</tr>
<tr>
<td>(CS-10, 1000g, 3000 cycles)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abrasion Resistance</td>
<td>ASTM D968</td>
<td>No wear through</td>
</tr>
<tr>
<td>(690 liters)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chip Resistance</td>
<td>ASTM D3170-03</td>
<td>7B</td>
</tr>
<tr>
<td>Heat Resistance: Dry</td>
<td>Temperature (°F)</td>
<td>300°F (149°C)</td>
</tr>
<tr>
<td>Heat Resistance: Water</td>
<td>Temperature (°F)</td>
<td>212°F (100°C)</td>
</tr>
<tr>
<td>Impact Resistance</td>
<td>ASTM D2794</td>
<td>160/160 direct/reverse</td>
</tr>
<tr>
<td>Hardness</td>
<td>ASTM D3363</td>
<td>6H</td>
</tr>
<tr>
<td>Flexibility</td>
<td>ASTM D522</td>
<td>1/8” (270° bend)</td>
</tr>
<tr>
<td>Pull Testing</td>
<td>ASTM D4541</td>
<td>3,000+ psi</td>
</tr>
<tr>
<td>Corrosion Resistance</td>
<td>ASTM B117</td>
<td>11,000 hrs no change</td>
</tr>
<tr>
<td>(Salt spray test)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cathodic Disbondment</td>
<td>G95</td>
<td>13 mm (90 days, ambient)</td>
</tr>
</tbody>
</table>

SPECIFICATION & PERFORMANCE
- Mils 5-9 mils DFT
- pH Range 3-14 pH (contingent upon liquid stored and temperature)
- Testing Factory holiday free - per ASTM D5162
EXT FUSION SDP™

CHARACTERISTICS
- Outstanding toughness with proven weatherability
- Fusion bonded to FBE base coat
- Gloss retention > 30%
- Enhanced resistance to chalking or fading
- Superior exterior durability
- Can not be scratched off independent of the base coating

PHYSICAL PROPERTIES
<table>
<thead>
<tr>
<th>CONDITION</th>
<th>TEST METHOD</th>
<th>PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesion</td>
<td>ASTM D3359</td>
<td>4+</td>
</tr>
<tr>
<td>Impact Resistance</td>
<td>ASTM D2794</td>
<td>40+</td>
</tr>
<tr>
<td>Elongation</td>
<td>ASTM D522</td>
<td>1/2” or better</td>
</tr>
<tr>
<td>Exterior Durability</td>
<td>AAMA 2604-05</td>
<td>5 year Florida</td>
</tr>
<tr>
<td>Hardness</td>
<td>ASTM D3363</td>
<td>H+</td>
</tr>
<tr>
<td>Corrosion Resistance</td>
<td>ASTM B117</td>
<td>> 10,000 hrs</td>
</tr>
</tbody>
</table>

SPECIFICATION & PERFORMANCE
- Film Thickness: 6-10 mils DFT

LIQ FUSION 8000 FBE™ + EXT FUSION SDP™

Tank Connection’s external coating utilizes its exclusive base coat and top coat fused together. The combination of the protective properties of both the primer and top coat creates an external coating that outperforms all other coating systems. In recognized exposure testing (Southern Florida Exposure Tests) this system is rated at 5 years without change.
VERSUS

FUSION COATINGS OUTPERFORM GLASS/VITREOUS ENAMEL COATINGS

GLASS CHARACTERISTICS

- Requires web truss support
- No flexibility, subject to cracking
- Zero impact resistance
- Inherent flaking and spalling issues
- High factory reject rates
- Utilizes light tank designs
- Coating defects (holidays)
- Cannot be recoated or repaired
- Insufficient bolt hole coverage
- Insufficient panel edge coverage
- Short product life
- High maintenance

GLASS COATING EXAMPLES

Glass is subject to enamel slip, leading to insufficient coating coverage in the bolt holes and panel edges.

Due do the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

FUSION COATING EXAMPLES

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.

Requires web truss support

Due to the inflexibility of glass coating, it often cracks at the bolt heads.

Tank panels must be offset to minimize cracking during installation.

Panel unzipping as a result of corrosion and joint failure.

Mastic sealant being used to attempt to cover up deficiencies.

Glass tanks can never be recoated.

Light glass tank design requires web truss support.
THE STORAGE AUTHORITY

When it comes to precision design and expert knowledge, Tank Connection maintains one of the most extensive engineering departments in the tank industry, with P.E.’s that sit on AWWA D103, AWWA D104, AWWA D106 and AWWA D108 committees. Tank Connection also maintains an expanded listing of P.E. stamps throughout the U.S. Starting with steel procurement at the mill and finishing with construction services in the field, all design, manufacturing, project management, system integration and field installation services are available through Tank Connection’s experienced personnel.

Tank Connection’s storage products are designed for low maintenance and long term performance. Bolted RTP tank construction outperforms all other types of bolted tank construction through superior design, proprietary coating systems and safe and expedient field installation processes. Let Tank Connection’s expert industrial designers and shop technicians, with decades of experience in tank production, turn your specifications into a specialized tank built to last.

WHEN IT COMES TO SAFETY, WE’VE GOT BOTH FEET ON THE GROUND

At Tank Connection, quality and safety are second nature. Tank Connection’s field installation utilizes a synchronized jack process, which allows field crews to install tanks at grade level. This process promotes cost and time efficiency and receives the highest industry ratings for quality control and safety in the field.

Tank Connection jacking systems are stored at various global locations for expeditious results at the lowest factored cost.
BOLTED RTP LAP JOINT PANEL CONSTRUCTION

Tank Connection's bolted RTP tanks are heavy, modular tank designs. This Category 1 design does not require external web truss support. Tank Connection’s RTP panel construction utilizes lap joint panel connections, which require exact manufacturing tolerances. The precision fabricated panels form vertical bolt seam patterns for improved strength, enhanced aesthetics and accurate panel connections. When combined with the appropriate gasket and sealant, a leak-free barrier is maintained between panels.

CATEGORY 1

FIELD WELD TANK DESIGN

- **APPLICATION CODE**: AWWA D103
- **PANEL TYPE**: Horizontal rolled panels
- **PANEL SIZE**: Varies
- **WEB STIFFENERS**: None
- **QUALITY**: Best Quality

CATEGORY 1

BOLTED RTP TANK DESIGN

- **APPLICATION CODE**: AWWA D103
- **PANEL TYPE**: Horizontal RTP
- **PANEL SIZE**: 10’ x 5’
- **WEB STIFFENERS**: None
- **QUALITY**: Best Quality

CATEGORY 2

BOLTED RTP TANK DESIGN

- **APPLICATION CODE**: AWWA D103
- **PANEL TYPE**: Horizontal RTP
- **PANEL SIZE**: 10’ x 5’
- **WEB STIFFENERS**: 1-2
- **QUALITY**: Best Quality

CATEGORY 3

BOLTED RTP TANK DESIGN

- **APPLICATION CODE**: AWWA D103
- **PANEL TYPE**: Horizontal RTP
- **PANEL SIZE**: 10’ x 5’
- **WEB STIFFENERS**: 3-4
- **QUALITY**: Good Quality

CATEGORY 4

BOLTED API 12B FLANGED PANEL TANK DESIGN

- **APPLICATION CODE**: AWWA D103
- **PANEL TYPE**: Vertical flanged
- **PANEL SIZE**: 5’ x 8’
- **WEB STIFFENERS**: Horizontal flange connections
- **QUALITY**: Marginal Quality

CATEGORY 5

BOLTED FLAT PANEL & CORRUGATED PANEL TANK DESIGN

- **APPLICATION CODE**: Varies
- **PANEL TYPE**: Horizontal & corrugated panel
- **PANEL SIZE**: Varies
- **WEB STIFFENERS**: Varies + vertical stiffeners
- **QUALITY**: Lowest Quality
<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>CATEGORY 1</th>
<th>CATEGORY 2</th>
<th>CATEGORY 3</th>
<th>CATEGORY 4</th>
<th>CATEGORY 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potable Water - Ground Reservoir</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Potable Water - Standpipe</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Fire Protection</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Raw Water</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Demineralized Water</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Industrial Process Water</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Desalinated Water</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Brine</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Other Water</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Municipal Treatment</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Landfill Leachate</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Primary & Secondary Sedimentation</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Frac Water</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Trickling Filters</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Anaerobic Digestion</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Sludge</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Storm Water Run-off</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Other Wastewater</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Process Liquids</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Lime Slurry</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Carbonate Slurry</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Secondary Containment</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Edible Oils</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Resins</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Crude Oil</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Diesel Fuel</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Drilling Fluids</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Drilling Mud</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Liquid Manure</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
<tr>
<td>Irrigation</td>
<td>Poor</td>
<td>Marginal</td>
<td>Good</td>
<td>Best</td>
<td>Poor</td>
</tr>
</tbody>
</table>
APEX Domes by Tank Connection offers strength, flexibility, proprietary design and innovative engineering. Advanced design creates superior leak protection, maximum vapor loss protection and enhanced load capacity.

An APEX Domes engineered node detail utilizes a proprietary extrusion design. The spun aluminum gusset cover provides a precision seal.

APEX Domes beam design includes flange stiffeners for enhanced rigidity.

The batten bar attachment center groove is designed so that fasteners can be installed and removed multiple times in the same slot.

Triple protective features against leaking.
GOLDEN RULE CUSTOMER SERVICE

Tank Connection provides a full service approach to storage tank construction and field services. Whether its consulting, project management or tank and auxiliary design, Tank Connection’s Golden Rule customer service will meet and exceed client expectations.

WE WILL MEET & EXCEED YOUR EXPECTATIONS.

- Tank Connection designs and builds the highest quality products that will stand the test of time.
- Honesty, integrity and a targeted focus on client success and satisfaction are paramount.
- Tank Connection is home to the leading experts with the most experience in the industry.
- Quality, technological innovation and accountability are driven by a progressive vision.

CERTIFICATIONS

- ISO 9001-2015 (International Standards Organization)
- FM 4020/4021 (Factory Mutual)
- NSF 61 (National Sanitation Foundation) Drinking Water System Components
- ANQAS - Indonesian Potable Water Storage
- AS/NZS 4020 - Australia/New Zealand Potable Water Storage

REQUEST A QUOTE AND GET CONNECTED WITH REAL PERFORMANCE FROM THE INDUSTRY LEADER, TANK CONNECTION!

TANK CONNECTION: 3609 North 16th Street, Parsons, KS 67357
PHONE: +1 620.423.3010 | EMAIL: sales@tankconnection.com
WEB: TANKCONNECTION.COM | APEXDOMES.COM